

B.Sc. III Year (PCM) Model Paper - A

Paper -I (Abstract Algebra)

Max. Marks: 50

Time allowed: 3 Hrs

UNIT-I

Q.1 (a) Let a binary operation * defined on a set $G = \{(a,b)/a, b \in R \text{ and } a \neq 0\}$ such that $(a,b)*(c,d) = (ac,bc+d), \forall (a,b), (cd) \in G$ Then show that (G,*) is a group.

(b) Let
$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 8 & 9 & 6 & 4 & 5 & 2 & 3 & 1 \end{pmatrix}$$

 $\sigma = (1 & 3 & 4) (5 & 6) (2 & 7 & 8 & 9)$

Then find $\sigma^{-1}\rho\sigma$

Show ρ is multiplication of disjoint cycle. ρ is even or odd permutation? and also find its order.

0r

- Q.2(a) Prove that a non-empty subset H of a group G is subgroup iff $a \in H$, $b \in H \Rightarrow ab^{-1} \in H$
 - (b) If H be a subgroup of G then prove that any two right (left) cosets of H are either identical or disjoint.

UNIT-II

- Q.3(a) Define isomorphism on a group. State and prove cayley's theorem.
 - (b) Prove that:-
 - (i) Homomorphism image of a commutative group is again commutative.
 - (ii) Homomorphic image of a cyclic group is again cyclic.

Or

- Q.4(a) Define quotient group. If G = (Z, +), H = (4Z, +) then find quotient group $\frac{G}{H}$. Find composition table for $\frac{G}{H}$.
 - (b) Define normal subgroup of a group. If H is a subgroup of a group G and N is a normal subgroup of G then prove that $H \cap N$ is a normal subgroup of H.

UNIT-III

- Q.5(a) For a ring R in which $a^2 = a$, $\forall a \in R$, prove that
 - (i) $a + a = 0, \forall a \in R$
 - (ii) $a + b = 0 \Rightarrow a = b, b \in R$
 - (iii) *R* is a commutative ring
 - (b) The necessary and sufficient condition for a non empty subset K of a field F to be a subfield are.
 - (i.) $a \in K, b \in K \Rightarrow a b \in K$
 - (ii.) $a \in K$, $0 \neq b \in K \Rightarrow ab^{-1} \in K$

0r

- Q.6.(a) Prove that every field is an integral domain but the converse is not necessarily true.
 - (b) Prove that the field $(Q, +, \cdot)$ of rational numbers is prime field.

UNIT-IV

- Q.7(a) Prove that the ring $\langle Z, +, \cdot \rangle$ of integers is a principal ideal domain.
 - (b) If , I_1 and I_2 be two ideals of a ring R, then prove that $I_1 + I_2 = \{a_1 a_2 / a_1 \in I_1, a_2 \in I_2\}$ is an ideal of R containing both I_1 and I_2 .

0r

- Q.8(a) Prove that the metrix set $V = \left\{ \binom{a0}{0b} / a, b \in R \right\}$ is a vector space over the field R of real numbers with respect to matrix addition and matrix scalar multiplication.
 - (b) Define a vector subspace. If V is a vector space over the field F and v_1 and v_2 are fixed elements of V then show that the set

 $S = {\alpha v_1 + \beta v_2 / \alpha, \beta \in F}$ is a vector subspace.

UNIT-V

- 9 (a) Define linear spam. Prove that the linear spam L(S) of subset S of a vector space V(F) is the smallest subspace of V(F) containing S.
- (b) Prove that the necessary and sufficient conditions for a vector space V(F) to be the direct sum of two of its subspaces U(F) and W(F) are :-
 - (i) V=U+W

(ii) $U \cap W = \{0\}$

0r

- 10 (a) Prove that every finite dimensional vector space has a basis.
 - (b) If W be a subspace of a finite dimensional vector space V (F) then prove that

$$dim\left(\frac{V}{W}\right) = \dim V - \dim W$$

B.Sc. III Year (PCM) Model Paper - B

Paper -I (Abstract Algebra)

Time allowed: 3 Hrs Max. Marks: 50

<u>UNIT -I</u>

- Q.1(a) Define the order of an element of a group. Prove that n is order of an element a of group G then order of a^p is also n where p and n are relatively prime.
 - (b) Prove that set of all even permutation of set A_n is group with $\frac{n!}{2}$ order.
- Q.2 (a) Define subgroup. State and prove legranges theorem.

or

(b) If H is subgroup of G and (G:H) = 2 then prove that aH = Ha, $\forall a \in G$

UNIT-II

- Q.3(a) Let f be a homomorphism from group G to G' then f is one-one iff ker $f = \{e\}$ where e is identify of G.
 - (b) If H and K are two normal subgroup of G then prove that HK is normal subgroup of G

0r

- Q.4 (a) Prove that intersection of any two normal subgroup of a group
 - (b) Prove that every homomorphism image of a G is isomorphic to some quotient group of G.

UNIT -III

Q.5 (a) Prove that the set

$$R = \{m + n\sqrt{2}/m, n \in Z\}$$

Is a ring with respect to ordinary addition and multiplication of real numbers. Is it a field.

- (b) Define characteristic of a field and prove that characteristic of a field is either zero or a prime number.
- Q.6 (a) Define subring and prove that a nonempty subset S of a ring R is a subring of R iff.
 - i) $a \in s, b \in S \Rightarrow a b \in S$
 - ii) $a \in S, b \in S \Rightarrow ab \in S$
 - (b) Prove that every ring can be embedded in a ring with unity.

UNIT-IV

UNIT-IV

- Q.7(a) Define a principal ideal ring and principal ideal domain prove that the ring (z, +, .) of integers is a principal ideal ring and principal ideal domain.
 - (b) Prove that an ideal I of a commutative ring R with unity is prime iff $^R/_I$ is an integral domain.

Or

Q. 8(a) Let V be a vector space over a field F. Than prove that

i) $a.0 = 0, \forall a \in F$

- ii) $0. v = 0, \forall a \in V$
- iii) $(-a).v = a(-v) = -(a.v); \forall a \in F, v \in F$
- iv) $a.v = 0 \Rightarrow either a = 0 \text{ or } v = 0$
- (b) Prove that a non-empty subset W of a vector space V over a field F is a subspace of V(F) iff $av + \beta v \in W$ for all $\alpha, \beta \in F$ and for all $u, v \in W$

UNIT-V

- Q.9(a) For which value of k will the vector $u = (5, k, 7) \in V_3(R)$ be a linear combination of vectors $u_1 = (1,5,3)$ and $u_2 = (3,2,1)$
 - (b) If S and T are subspaces of a vector space V(F) then prove that the set

$$S + T = \left\{ s + \frac{t}{s} \in s, t \in T \right\}$$

or

- Q.10 (a) Prove that if $\{u_1u_2, u_3\}$ is a basis for $V_3(R)$, then $\{u_1 + u_2, u_1 + u_3, u_2 + u_3\}$ is also a basis of $V_3(R)$
 - (b) If W_1 and W_2 are finite dimensional subspaces of a vector space, then.

$$\dim (W_1) + \dim (W_2) = \dim (W_1 + W_2) + \dim (W_1 \cap W_2)$$