Group of Girls' Colleges
 B.Sc. III Year (PCM)
 Model Paper - A
 Paper -I (Abstract Algebra)

Time allowed : 3 Hrs

UNIT -I

Q. 1 (a) Let a binary operation * defined on a set $G=\{(a, b) / a, b \in R$ and $a \neq 0\}$ such that
$(a, b) *(c, d)=(a c, b c+d), \forall(a, b),(c d) \in G$
Then show that ($G, *$) is a group.
(b) Let $\rho=\binom{123456789}{789645231}$ $\sigma=(134)(56)(2789)$
Then find $\sigma^{-1} \rho \sigma$
Show ρ is multiplication of disjoint cycle. ρ is even or odd permutation? and also find its order.
Or
Q.2(a) Prove that a non-empty subset H of a group G is subgroup iff $a \in H, b \in H \Rightarrow a b^{-1} \in H$
(b) If H be a subgroup of G then prove that any two right (left) cosets of H are either identical or disjoint.

UNIT-II

Q.3(a) Define isomorphism on a group. State and prove cayley's theorem.
(b) Prove that :-
(i) Homomorphism image of a commutative group is again commutative.
(ii) Homomorphic image of a cyclic group is again cyclic.

Or
Q.4(a) Define quotient group. If $G=(Z,+), H=(4 Z,+)$ then find quotient group $\frac{G}{H}$. Find composition table for $\frac{G}{H}$.
(b) Define normal subgroup of a group. If H is a subgroup of a group G and N is a normal subgroup of G then prove that $H \cap N$ is a normal subgroup of H .

UNIT-III

Q.5(a) For a ring R in which $a^{2}=a, \forall a \in R$, prove that
(i) $a+a=0, \forall a \in R$
(ii) $a+b=0 \Rightarrow a=b, b \in R$
(iii) R is a commutative ring
(b) The necessary and sufficient condition for a non empty subset K of a field F to be a subfield are.
(i.) $a \in K, b \in K \Rightarrow a-b \in K$
(ii.) $a \in K, 0 \neq b \in K \Rightarrow a b^{-1} \in K$

Or

Q.6.(a) Prove that every field is an integral domain but the converse is not necessarily true.
(b) Prove that the field $\langle Q,+, \cdot\rangle$ of rational numbers is prime field.

UNIT-IV

Q.7(a) Prove that the ring $\langle Z,+, \cdot\rangle$ of integers is a principal ideal domain.
(b) If , I_{1} and I_{2} be two ideals of a ring R, then prove that $I_{1}+I_{2}=\left\{a_{1} a_{2} / a_{1} \in I_{1}, a_{2} \in I_{2}\right\}$ is an ideal of R containing both I_{1} and I_{2}.

Or
Q.8(a) Prove that the metrix set $V=\left\{\binom{a 0}{0 b} / a, b \in R\right\}$ is a vector space over the field R of real numbers with respect to matrix addition and matrix scalar multiplication.
(b) Define a vector subspace. If V is a vector space over the field F and v_{1} and v_{2} are fixed elements of V then show that the set
$S=\left\{\alpha v_{1}+\beta v_{2} / \alpha, \beta \in F\right\}$ is a vector subspace.

UNIT-V

9 (a) Define linear spam. Prove that the linear spam $L(S)$ of subset S of a vector space $V(F)$ is the smallest subspace of $V(F)$ containing S.
(b) Prove that the necessary and sufficient conditions for a vector space $\mathrm{V}(\mathrm{F})$ to be the direct sum of two of its subspaces $U(F)$ and $W(F)$ are :-
(i) $\quad \mathrm{V}=\mathrm{U}+\mathrm{W}$
(ii) $U \cap W=\{0\}$

Or
10 (a) Prove that every finite dimensional vector space has a basis.
(b) If W be a subspace of a finite dimensional vector space $\mathrm{V}(\mathrm{F})$ then prove that
$\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W$

Time allowed : 3 Hrs
Max. Marks : 50

UNIT -I

Q.1(a) Define the order of an element of a group. Prove that n is order of an element a of group G then order of a^{p} is also n where p and n are relatively prime.
(b) Prove that set of all even permutation of set A_{n} is group with $\frac{n!}{2}$ order.
Q. 2 (a) Define subgroup. State and prove legranges theorem.
or
(b) If H is subgroup of G and $(\mathrm{G}: H)=2$ then prove that $a H=H a, \forall a \in G$

UNIT -II

Q.3(a) Let f be a homomorphism from group G to G^{\prime} then f is one-one iff $\operatorname{ker} \mathrm{f}=\{\mathrm{e}\}$ where e is identify of G.
(b) If H and K are two normal subgroup of G then prove that HK is normal subgroup of G

Or

Q. 4 (a) Prove that intersection of any two normal subgroup of a group
(b) Prove that every homomorphism image of a G is isomorphic to some quotient group of G .

UNIT -III

Q. 5 (a) Prove that the set
$R=\{m+n \sqrt{2} / m, n \in \mathrm{Z}\}$
Is a ring with respect to ordinary addition and multiplication of real numbers. Is it a field.
(b) Define characteristic of a field and prove that characteristic of a field is either zero or a prime number.
Q. 6 (a) Define subring and prove that a nonempty subset S of a ring R is a subring of R iff.
i) $\quad a \in s, b \in S \Rightarrow a-b \in S$
ii) $\quad a \in S, b \in S \Rightarrow a b \in S$
(b) Prove that every ring can be embedded in a ring with unity.

UNIT -IV

UNIT -IV

Q.7(a) Define a principal ideal ring and principal ideal domain prove that the ring $(z,+,$.$) of$ integers is a principal ideal ring and principal ideal domain.
(b) Prove that an ideal I of a commutative ring R with unity is prime iff R / I is an integral domain.

Or

Q. 8(a) Let V be a vector space over a field F. Than prove that
i) $\quad a .0=0, \forall a \in F$
ii) $\quad 0 . v=0, \forall a \in V$
iii) $\quad(-a) \cdot v=a(-v)=-(a \cdot v) ; \forall a \in F, v \in F$
iv) $\quad a . v=0 \Rightarrow$ either $a=0$ or $v=0$
(b) Prove that a non-empty subset W of a vector space V over a field F is a subspace of $V(F)$ iff $a v+\beta v \in W$ for all $\alpha, \beta \in F$ and for all $u, v \in W$

UNIT -V

Q.9(a) For which value of k will the vector $u=(5, k, 7) \in V_{3}(R)$ be a linear combination of vectors $u_{1}=(1,5,3)$ and $u_{2}=(3,2,1)$
(b) If S and T are subspaces of a vector space $V(F)$ then prove that the set

$$
S+T=\left\{s+\frac{t}{s} \in s, t \in T\right\}
$$

or
Q. 10 (a) Prove that if $\left\{u_{1} u_{2}, u_{3}\right\}$ is a basis for $V_{3}(R)$, then $\left\{u_{1}+u_{2}, u_{1}+u_{3}, u_{2}+u_{3}\right\}$ is also a basis of $V_{3}(R)$
(b) If W_{1} and W_{2} are finite dimensional subspaces of a vector space, then. $\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)=\operatorname{dim}\left(W_{1}+W_{2}\right)+\operatorname{dim}\left(W_{1} \cap W_{2}\right)$

